Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540675

RESUMO

Brain cholesterol metabolic products include neurosteroids and oxysterols, which play important roles in cellular physiology. In neurons, the cholesterol oxidation product, 24S-hydroxycholesterol (24S-HC), is a regulator of signaling and transcription. Here, we examined the behavioral effects of 24S-HC loss, using global and cell-selective genetic deletion of the synthetic enzyme CYP46A1. Mice that are globally deficient in CYP46A1 exhibited hypoactivity at young ages and unexpected increases in conditioned fear memory. Despite strong reductions in hippocampal 24S-HC in mice with selective loss of CYP46A1 in VGLUT1-positive cells, behavioral effects were not recapitulated in these conditional knockout mice. Global knockout produced strong, developmentally dependent transcriptional effects on select cholesterol metabolism genes. These included paradoxical changes in Liver X Receptor targets. Again, conditional knockout was insufficient to recapitulate most changes. Overall, our results highlight the complex effects of 24S-HC in an in vivo setting that are not fully predicted by known mechanisms. The results also demonstrate that the complete inhibition of enzymatic activity may be needed for a detectable, therapeutically relevant impact on gene expression and behavior.


Assuntos
Colesterol , Hidroxicolesteróis , Camundongos , Animais , Colesterol 24-Hidroxilase/metabolismo , Hidroxicolesteróis/metabolismo , Colesterol/metabolismo , Hipocampo/metabolismo
2.
Biopharm Drug Dispos ; 45(2): 93-106, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38488691

RESUMO

Alzheimer's disease is a complex multifactorial neurodegenerative disorder wherein age is a major risk factor. The appropriateness of the Hartley guinea pig (GP), which displays high sequence homologies of its amyloid-ß (Aß40 and Aß42) peptides, Mdr1 and APP (amyloid precursor protein) and similarity in lipid handling to humans, was appraised among 9-40 weeks old guinea pigs. Protein expression levels of P-gp (Abcb1) and Cyp46a1 (24(S)-hydroxylase) for Aß40, and Aß42 efflux and cholesterol metabolism, respectively, were decreased with age, whereas those for Lrp1 (low-density lipoprotein receptor related protein 1), Rage (receptor for advanced glycation endproducts) for Aß efflux and influx, respectively, and Abca1 (the ATP binding cassette subfamily A member 1) for cholesterol efflux, were unchanged among the ages examined. There was a strong, negative correlation of the brain Aß peptide concentrations and Abca1 protein expression levels with free cholesterol. The correlation of Aß peptide concentrations with Cyp46a1 was, however, not significant, and concentrations of the 24(S)-hydroxycholesterol metabolite revealed a decreasing trend from 20 weeks old toward 40 weeks old guinea pigs. The composite data suggest a role for free cholesterol on brain Aß accumulation. The decreases in P-gp and Lrp1 protein levels should further exacerbate the accumulation of Aß peptides in guinea pig brain.


Assuntos
Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide , Cobaias , Humanos , Animais , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Colesterol 24-Hidroxilase/metabolismo , Encéfalo/metabolismo , Envelhecimento , Colesterol/metabolismo
3.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396919

RESUMO

High dose (S)-efavirenz (EFV) inhibits the HIV reverse transcriptase enzyme and is used to lower HIV load. Low-dose EFV allosterically activates CYP46A1, the key enzyme for cholesterol elimination from the brain, and is investigated as a potential treatment for Alzheimer's disease. Simultaneously, we evaluate EFV dihydroxymetabolites for in vivo brain effects to compare with those of (S)-EFV. We have already tested (rac)-8,14dihydroxy EFV on 5XFAD mice, a model of Alzheimer's disease. Herein, we treated 5XFAD mice with (rac)-7,8dihydroxy EFV. In both sexes, the treatment modestly activated CYP46A1 in the brain and increased brain content of acetyl-CoA and acetylcholine. Male mice also showed a decrease in the brain levels of insoluble amyloid ß40 peptides. However, the treatment had no effect on animal performance in different memory tasks. Thus, the overall brain effects of (rac)-7,8dihydroxy EFV were weaker than those of EFV and (rac)-8,14dihydroxy EFV and did not lead to cognitive improvements as were seen in treatments with EFV and (rac)-8,14dihydroxy EFV. An in vitro study assessing CYP46A1 activation in co-incubations with EFV and (rac)-7,8dihydroxy EFV or (rac)-8,14dihydroxy EFV was carried out and provided insight into the compound doses and ratios that could be used for in vivo co-treatments with EFV and its dihydroxymetabolite.


Assuntos
Doença de Alzheimer , Fármacos Anti-HIV , Infecções por HIV , Feminino , Masculino , Camundongos , Animais , Colesterol 24-Hidroxilase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Benzoxazinas/química , Alcinos/uso terapêutico , Ciclopropanos/uso terapêutico , Infecções por HIV/tratamento farmacológico , Inibidores da Transcriptase Reversa/farmacologia , Fármacos Anti-HIV/uso terapêutico
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 166993, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38142760

RESUMO

Cholesterol 24-hydroxylase (CYP46A1) is an exclusively neuronal cytochrome P450 enzyme responsible for converting cholesterol into 24S-hydroxycholesterol, which serves as the primary pathway for eliminating cholesterol in the brain. We and others have shown that increased activity of CYP46A1 leads to reduced levels of cholesterol and has a positive effect on cognition. Therefore, we hypothesized that CYP46A1 could be a potential therapeutic target in Niemann-Pick type C (NPC) disease, a rare and fatal neurodegenerative disorder, characterized by cholesterol accumulation in endolysosomal compartments. Herein, we show that CYP46A1 ectopic expression, in cellular models of NPC and in Npc1tm(I1061T) mice by adeno-associated virus-mediated gene therapy improved NPC disease phenotype. Amelioration in functional, biochemical, molecular and neuropathological hallmarks of NPC disease were characterized. In vivo, CYP46A1 expression partially prevented weight loss and hepatomegaly, corrected the expression levels of genes involved in cholesterol homeostasis, and promoted a redistribution of brain cholesterol accumulated in late endosomes/lysosomes. Moreover, concomitant with the amelioration of cholesterol metabolism dysregulation, CYP46A1 attenuated microgliosis and lysosomal dysfunction in mouse cerebellum, favoring a pro-resolving phenotype. In vivo CYP46A1 ectopic expression improves important features of NPC disease and may represent a valid therapeutic approach to be used concomitantly with other drugs. However, promoting cholesterol redistribution does not appear to be enough to prevent Purkinje neuronal death in the cerebellum. This indicates that cholesterol buildup in neurons might not be the main cause of neurodegeneration in this human lipidosis.


Assuntos
Doença de Niemann-Pick Tipo C , Camundongos , Humanos , Animais , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/terapia , Doença de Niemann-Pick Tipo C/metabolismo , Colesterol 24-Hidroxilase/metabolismo , Colesterol 24-Hidroxilase/uso terapêutico , Colesterol/metabolismo , Encéfalo/metabolismo , Cerebelo/patologia
5.
Cell Rep Med ; 4(11): 101278, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37944529

RESUMO

The choroid plexus (CP) plays a key role in remotely controlling brain function in health, aging, and disease. Here, we report that CP epithelial cells express the brain-specific cholesterol 24-hydroxylase (CYP46A1) and that its levels are decreased under different mouse and human brain conditions, including amyloidosis, aging, and SARS-CoV-2 infection. Using primary mouse CP cell cultures, we demonstrate that the enzymatic product of CYP46A1, 24(S)-hydroxycholesterol, downregulates inflammatory transcriptomic signatures within the CP, found here to be elevated across multiple neurological conditions. In vitro, the pro-inflammatory cytokine tumor necrosis factor α (TNF-α) downregulates CYP46A1 expression, while overexpression of CYP46A1 or its pharmacological activation in mouse CP organ cultures increases resilience to TNF-α. In vivo, overexpression of CYP46A1 in the CP in transgenic mice with amyloidosis is associated with better cognitive performance and decreased brain inflammation. Our findings suggest that CYP46A1 expression in the CP impacts the role of this niche as a guardian of brain immune homeostasis.


Assuntos
Amiloidose , Plexo Corióideo , Humanos , Camundongos , Animais , Colesterol 24-Hidroxilase/metabolismo , Plexo Corióideo/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Encéfalo/patologia , Homeostase/fisiologia , Camundongos Transgênicos , Amiloidose/metabolismo , Amiloidose/patologia
6.
Sci Rep ; 13(1): 9166, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280310

RESUMO

A growing body of evidence suggests that oxysterols such as 25-hydroxycholesterol (25HC) are biologically active and involved in many physiological and pathological processes. Our previous study demonstrated that 25HC induces an innate immune response during viral infections by activating the integrin-focal adhesion kinase (FAK) pathway. 25HC produced the proinflammatory response by binding directly to integrins at a novel binding site (site II) and triggering the production of proinflammatory mediators such as tumor necrosis factor-α (TNF) and interleukin-6 (IL-6). 24-(S)-hydroxycholesterol (24HC), a structural isomer of 25HC, plays a critical role in cholesterol homeostasis in the human brain and is implicated in multiple inflammatory conditions, including Alzheimer's disease. However, whether 24HC can induce a proinflammatory response like 25HC in non-neuronal cells has not been studied and remains unknown. The aim of this study was to examine whether 24HC produces such an immune response using in silico and in vitro experiments. Our results indicate that despite being a structural isomer of 25HC, 24HC binds at site II in a distinct binding mode, engages in varied residue interactions, and produces significant conformational changes in the specificity-determining loop (SDL). In addition, our surface plasmon resonance (SPR) study reveals that 24HC could directly bind to integrin αvß3, with a binding affinity three-fold lower than 25HC. Furthermore, our in vitro studies with macrophages support the involvement of FAK and NFκB signaling pathways in triggering 24HC-mediated production of TNF. Thus, we have identified 24HC as another oxysterol that binds to integrin αvß3 and promotes a proinflammatory response via the integrin-FAK-NFκB pathway.


Assuntos
Hidroxicolesteróis , Integrina alfaVbeta3 , Simulação por Computador , Humanos , Integrina alfaVbeta3/química , Integrina alfaVbeta3/metabolismo , Hidroxicolesteróis/química , Hidroxicolesteróis/metabolismo , Inflamação/metabolismo , Transdução de Sinais , Macrófagos/metabolismo , Modelos Moleculares , Termodinâmica , Conformação Proteica , Ressonância de Plasmônio de Superfície , Colesterol 24-Hidroxilase/metabolismo
7.
Redox Biol ; 64: 102769, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37285742

RESUMO

Cholesterol-24-hydroxylase (CH24H or Cyp46a1) is a reticulum-associated membrane protein that plays an irreplaceable role in cholesterol metabolism in the brain and has been well-studied in several neuro-associated diseases in recent years. In the present study, we found that CH24H expression can be induced by several neuroinvasive viruses, including vesicular stomatitis virus (VSV), rabies virus (RABV), Semliki Forest virus (SFV) and murine hepatitis virus (MHV). The CH24H metabolite, 24-hydroxycholesterol (24HC), also shows competence in inhibiting the replication of multiple viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). 24HC can increase the cholesterol concentration in multivesicular body (MVB)/late endosome (LE) by disrupting the interaction between OSBP and VAPA, resulting in viral particles being trapped in MVB/LE, ultimately compromising VSV and RABV entry into host cells. These findings provide the first evidence that brain cholesterol oxidation products may play a critical role in viral infection.


Assuntos
Internalização do Vírus , Animais , Camundongos , Colesterol/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Homeostase , SARS-CoV-2/metabolismo , Colesterol 24-Hidroxilase/metabolismo
8.
Eur J Pharmacol ; 949: 175726, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37062503

RESUMO

Cholesterol is a key component of the cell membrane that impacts the permeability, fluidity, and functions of membrane-bound proteins. It also participates in synaptogenesis, synaptic function, axonal growth, dendrite outgrowth, and microtubule stability. Cholesterol biosynthesis and metabolism are in balance in the brain. Its metabolism in the brain is mediated mainly by CYP46A1 or cholesterol 24-hydroxylase. It is responsible for eliminating about 80% of the cholesterol excess from the human brain. CYP46A1 converts cholesterol to 24S-hydroxycholesterol (24HC) that readily crosses the blood-brain barrier and reaches the liver for the final elimination process. Studies show that cholesterol and 24HC levels change during neurological diseases and conditions. So, it was hypothesized that inhibition or activation of CYP46A1 would be an effective therapeutic strategy. Accordingly, preclinical studies, using genetic and pharmacological interventions, assessed the role of CYP46A1 in main neurodegenerative disorders such as Parkinson's disease, Huntington's disease, Alzheimer's disease, multiple sclerosis, spinocerebellar ataxias, and amyotrophic lateral sclerosis. In addition, its role in seizures and brain injury was evaluated. The recent development of soticlestat, as a selective and potent CYP46A1 inhibitor, with significant anti-seizure effects in preclinical and clinical studies, suggests the importance of this target for future drug developments. Previous studies have shown that both activation and inhibition of CYP46A1 are of therapeutic value. This article, using recent studies, highlights the role of CYP46A1 in various brain diseases and insults.


Assuntos
Doença de Alzheimer , Colesterol , Humanos , Colesterol 24-Hidroxilase/metabolismo , Colesterol/metabolismo , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo
9.
Curr Drug Metab ; 24(2): 124-130, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36748817

RESUMO

BACKGROUND: Cytochrome P450 (CYP) 46A1 enzyme is a neuro-specific metabolic enzyme that converts cholesterol to 24-hydroxycholesterol. Inhibition of CYP46A1 activity is of great significance to improve neurodegenerative disorder. OBJECTIVE: The present study aimed to investigate the inhibitory effect of wolfberry dicaffeoylspermidine derivatives on CYP46A1. METHODS: The inhibitory effect of six wolfberry dicaffeoylspermidine derivatives on CYP46A1 activity was investigated using cholesterol as a substrate in vitro. Molecular docking was used to simulate the interactions between wolfberry dicaffeoylspermidine derivatives and CYP46A1. RESULTS: Of these spermidines, lycibarbarspermidines D (1) and A (2) showed highly-selective and strong inhibitory effects on CYP46A1 but not on other human CYP isoforms. Both 1 and 2 exhibit mixed partial competitive inhibition of CYP46A1, with Ki values of 106 nM and 258 nM, respectively. Notably, 1 and 2 had excellent orientations within the active cavity of CYP46A1, and both formed three water-hydrogen bonds with W732 and W765, located near the heme of CYP46A1. CONCLUSION: Compounds 1 and 2 showed a highly-selective and nanomolar affinity for CYP46A1 in vitro. These findings suggested that compounds 1 and 2 could be used as potent inhibitors of CYP46A1 in vitro.


Assuntos
Lycium , Humanos , Colesterol 24-Hidroxilase/química , Colesterol 24-Hidroxilase/metabolismo , Lycium/metabolismo , Simulação de Acoplamento Molecular , Colesterol/metabolismo , Sistema Enzimático do Citocromo P-450
10.
J Lipid Res ; 64(2): 100323, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36586438

RESUMO

CYP46A1 is a CNS-specific enzyme, which eliminates cholesterol from the brain and retina by metabolism to 24-hydroxycholesterol, thus contributing to cholesterol homeostasis in both organs. 2-Hydroxypropyl-ß-cyclodextrin (HPCD), a Food and Drug Administration-approved formulation vehicle, is currently being investigated off-label for treatment of various diseases, including retinal diseases. HPCD was shown to lower retinal cholesterol content in mice but had not yet been evaluated for its therapeutic benefits. Herein, we put Cyp46a1-/- mice on high fat cholesterol-enriched diet from 1 to 14 months of age (control group) and at 12 months of age, started to treat a group of these animals with HPCD until the age of 14 months. We found that as compared with mature and regular chow-fed Cyp46a1-/- mice, control group had about 6-fold increase in the retinal total cholesterol content, focal cholesterol and lipid deposition in the photoreceptor-Bruch's membrane region, and retinal macrophage activation. In addition, aged animals had cholesterol crystals at the photoreceptor-retinal pigment epithelium interface and changes in the Bruch's membrane ultrastructure. HPCD treatment mitigated all these manifestations of retinal cholesterol dyshomeostasis and altered the abundance of six groups of proteins (genetic information transfer, vesicular transport, and cytoskeletal organization, endocytosis and lysosomal processing, unfolded protein removal, lipid homeostasis, and Wnt signaling). Thus, aged Cyp46a1-/- mice on high fat cholesterol-enriched diet revealed pathological changes secondary to retinal cholesterol overload and supported further studies of HPCD as a potential therapeutic for age-related macular degeneration and diabetic retinopathy associated with retinal cholesterol dyshomeostasis.


Assuntos
Degeneração Macular , Retina , Camundongos , Animais , 2-Hidroxipropil-beta-Ciclodextrina , Colesterol 24-Hidroxilase/metabolismo , Retina/metabolismo , Degeneração Macular/metabolismo , Modelos Animais de Doenças , Colesterol/metabolismo
11.
J Comp Neurol ; 531(3): 486-499, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36453552

RESUMO

Cholesterol-24-hydroxylase (CYP46), a member of the cytochrome P450 superfamily of enzymes, is selectively expressed in the brain and is mainly responsible for cholesterol turnover in the central nervous system. Although increased cyp46A1 gene expression has been linked to cognitive alterations in aging and observed in neurodegenerative diseases and after traumatic brain injury, a detailed characterization of the brain regions and cell types in which CYP46 is expressed in old individuals has not been performed. Using immunohistochemistry and immunofluorescence, we investigated the specific regions and cell populations in the brain, in which cyp46A1 is expressed in 24-month-old mice. We found that CYP46 is localized in the same neuronal populations in young and old brains, mainly in the hippocampus, in cortical layers, and in Purkinje neurons of the cerebellum. No increase in CYP46 levels was found in astrocytes in old mice brains, in primary astrocyte-neuron cocultures aged in vitro, or in primary cultures of senescent astrocytes. However, interleukin-6 treatment strongly induced cyp46A1 expression in reactive astrocytes characterized by high GFAP levels but had no effect in nonactivated astrocytes. Our data suggest that cholesterol-24-hydroxylase expression is triggered in reactive astrocytes in response to proinflammatory signals, probably as part of a response mechanism to injury.


Assuntos
Astrócitos , Encéfalo , Colesterol 24-Hidroxilase , Animais , Camundongos , Astrócitos/metabolismo , Encéfalo/metabolismo , Colesterol/metabolismo , Colesterol 24-Hidroxilase/metabolismo
12.
Alzheimers Res Ther ; 14(1): 198, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581878

RESUMO

BACKGROUND: Efavirenz is an anti-HIV drug, and cytochrome P450 46A1 (CYP46A1) is a CNS-specific enzyme that metabolizes cholesterol to 24-hydroxycholesterol (24HC). We have previously shown that allosteric CYP46A1 activation by low-dose efavirenz in a transgenic mouse model of Alzheimer's disease (AD) enhanced both cholesterol elimination and turnover in the brain and improved animal performance in memory tests. Here, we sought to determine whether CYP46A1 could be similarly activated by a low-dose efavirenz in human subjects.  METHODS: This pilot study enrolled 5 subjects with early AD. Participants were randomized to placebo (n = 1) or two daily efavirenz doses (50 mg and 200 mg, n = 2 for each) for 20 weeks and evaluated for safety and CYP46A1 target engagement (plasma 24HC levels). A longitudinal mixed model was used to ascertain the statistical significance of target engagement. We also measured 24HC in CSF and conducted a unique stable isotope labeling kinetics (SILK) study with deuterated water to directly measure CYP46A1 activity changes in the brain. RESULTS: In subjects receiving efavirenz, there was a statistically significant within-group increase (P ≤ 0.001) in the levels of plasma 24HC from baseline. The levels of 24HC in the CSF of subjects on the 200-mg dose of efavirenz were also increased. Target engagement was further supported by the labeling kinetics of 24HC by deuterated water in the SILK study. There were no serious adverse effects in any subjects. CONCLUSIONS: Our findings suggest efavirenz target engagement in human subjects with early AD. This supports the pursuit of a larger trial for further determination and confirmation of the efavirenz dose that exerts maximal enzyme activation, as well as evaluation of this drug's effects on AD biomarkers and clinical symptomatology. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03706885.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Colesterol , Colesterol 24-Hidroxilase/metabolismo , Colesterol 24-Hidroxilase/uso terapêutico , Projetos Piloto
13.
Sci Transl Med ; 14(665): eadc9967, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36197966

RESUMO

Alterations in brain cholesterol homeostasis have been broadly implicated in neurological disorders. Notwithstanding the complexity by which cholesterol biology is governed in the mammalian brain, excess neuronal cholesterol is primarily eliminated by metabolic clearance via cytochrome P450 46A1 (CYP46A1). No methods are currently available for visualizing cholesterol metabolism in the living human brain; therefore, a noninvasive technology that quantitatively measures the extent of brain cholesterol metabolism via CYP46A1 could broadly affect disease diagnosis and treatment options using targeted therapies. Here, we describe the development and testing of a CYP46A1-targeted positron emission tomography (PET) tracer, 18F-CHL-2205 (18F-Cholestify). Our data show that PET imaging readouts correlate with CYP46A1 protein expression and with the extent to which cholesterol is metabolized in the brain, as assessed by cross-species postmortem analyses of specimens from rodents, nonhuman primates, and humans. Proof of concept of in vivo efficacy is provided in the well-established 3xTg-AD murine model of Alzheimer's disease (AD), where we show that the probe is sensitive to differences in brain cholesterol metabolism between 3xTg-AD mice and control animals. Furthermore, our clinical observations point toward a considerably higher baseline brain cholesterol clearance via CYP46A1 in women, as compared to age-matched men. These findings illustrate the vast potential of assessing brain cholesterol metabolism using PET and establish PET as a sensitive tool for noninvasive assessment of brain cholesterol homeostasis in the clinic.


Assuntos
Doença de Alzheimer , Encéfalo , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Colesterol/metabolismo , Colesterol 24-Hidroxilase/metabolismo , Feminino , Homeostase , Humanos , Masculino , Mamíferos/metabolismo , Camundongos
14.
Neurobiol Dis ; 173: 105835, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35932989

RESUMO

Therapies for epilepsy mainly provide symptomatic control of seizures since most of the available drugs do not target disease mechanisms. Moreover, about one-third of patients fail to achieve seizure control. To address the clinical need for disease-modifying therapies, research should focus on targets which permit interventions finely balanced between optimal efficacy and safety. One potential candidate is the brain-specific enzyme cholesterol 24-hydroxylase. This enzyme converts cholesterol to 24S-hydroxycholesterol, a metabolite which among its biological roles modulates neuronal functions relevant for hyperexcitability underlying seizures. To study the role of cholesterol 24-hydroxylase in epileptogenesis, we administered soticlestat (TAK-935/OV935), a potent and selective brain-penetrant inhibitor of the enzyme, during the early disease phase in a mouse model of acquired epilepsy using a clinically relevant dose. During soticlestat treatment, the onset of epilepsy was delayed and the number of ensuing seizures was decreased by about 3-fold compared to vehicle-treated mice, as assessed by EEG monitoring. Notably, the therapeutic effect was maintained 6.5 weeks after drug wash-out when seizure number was reduced by about 4-fold and their duration by 2-fold. Soticlestat-treated mice showed neuroprotection of hippocampal CA1 neurons and hilar mossy cells as assessed by post-mortem brain histology. High throughput RNA-sequencing of hippocampal neurons and glia in mice treated with soticlestat during epileptogenesis showed that inhibition of cholesterol 24-hydroxylase did not directly affect the epileptogenic transcriptional network, but rather modulated a non-overlapping set of genes that might oppose the pathogenic mechanisms of the disease. In human temporal lobe epileptic foci, we determined that cholesterol 24-hydroxylase expression trends higher in neurons, similarly to epileptic mice, while the enzyme is ectopically induced in astrocytes compared to control specimens. Soticlestat reduced significantly the number of spontaneous seizures in chronic epileptic mice when was administered during established epilepsy. Data show that cholesterol 24-hydroxylase contributes to spontaneous seizures and is involved in disease progression, thus it represents a novel target for chronic seizures inhibition and disease-modification therapy in epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Animais , Colesterol/metabolismo , Colesterol 24-Hidroxilase/metabolismo , Modelos Animais de Doenças , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Humanos , Camundongos , Piperidinas , Piridinas , RNA/metabolismo , Convulsões/metabolismo
15.
Eur J Med Chem ; 240: 114612, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35863274

RESUMO

Cholesterol 24-hydroxylase (CH24H, CYP46A1) is a cytochrome P450 family enzyme that maintains the homeostasis of brain cholesterol. Soticlestat, a potent and selective CH24H inhibitor, is in development as a therapeutic agent for Dravet syndrome and Lennox-Gastaut syndrome. Herein, we report the discovery of aryl-piperidine derivatives as potent and selective CH24H positron emission tomography (PET) tracers which can be used for dose guidance of a clinical CH24H inhibitor and as a diagnostic tool for CH24H-related pathology. Starting from compound 1 (IC50 = 16 nM, logD = 1.7), which was reported as a CH24H inhibitor with lower lipophilicity, a18F-labeling site (3-fluoroazetidine) was incorporated by structure-based drug design (SBDD) utilizing the co-crystal structure of a compound 1 analog. Subsequent optimization to adjust key parameters for PET tracers, such as potency, lipophilicity, brain penetration, and unbound plasma protein binding, enabled compounds 3f (IC50 = 8.8 nM) and 3g (IC50 = 8.7 nM) as PET imaging candidates. Selectivity of these compounds for CH24H was validated by a brain distribution study using CH24H-WT and KO mice. In non-human primate PET imaging, [18F]3f and [18F]3g showed similar regional uptake in the brain, indicating that these tracers were specific to the CH24H-expressed regions and validated the expression of CH24H in the living brain by different tracers.


Assuntos
Tomografia por Emissão de Pósitrons , Piridinas , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Colesterol 24-Hidroxilase/metabolismo , Camundongos , Piperidinas/metabolismo , Piperidinas/farmacologia , Tomografia por Emissão de Pósitrons/métodos , Piridinas/metabolismo
16.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35887013

RESUMO

Efavirenz (EFV), an FDA-approved anti-HIV drug, has off-target binding to CYP46A1, the CNS enzyme which converts cholesterol to 24-hydroxycholesterol. At small doses, EFV allosterically activates CYP46A1 in mice and humans and mitigates some of the Alzheimer's disease manifestations in 5XFAD mice, an animal model. Notably, in vitro, all phase 1 EFV hydroxymetabolites activate CYP46A1 as well and bind either to the allosteric site for EFV, neurotransmitters or both. Herein, we treated 5XFAD mice with 8,14-dihydroxyEFV, the binder to the neurotransmitter allosteric site, which elicits the highest CYP46A1 activation in vitro. We found that treated animals of both sexes had activation of CYP46A1 and cholesterol turnover in the brain, decreased content of the amyloid beta 42 peptide, increased levels of acetyl-CoA and acetylcholine, and altered expression of the brain marker proteins. In addition, male mice had improved performance in the Barnes Maze test and increased expression of the acetylcholine-related genes. This work expands our knowledge of the beneficial CYP46A1 activation effects and demonstrates that 8,14-dihydroxyEFV crosses the blood-brain barrier and has therapeutic potential as a CYP46A1 activator.


Assuntos
Acetilcolina , Doença de Alzheimer , Encéfalo , Colesterol 24-Hidroxilase , Acetilcolina/análise , Acetilcolina/metabolismo , Alcinos/metabolismo , Alcinos/farmacologia , Alcinos/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Benzoxazinas/metabolismo , Benzoxazinas/farmacologia , Benzoxazinas/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Colesterol/metabolismo , Colesterol 24-Hidroxilase/genética , Colesterol 24-Hidroxilase/metabolismo , Colesterol 24-Hidroxilase/farmacologia , Ciclopropanos/metabolismo , Ciclopropanos/farmacologia , Ciclopropanos/uso terapêutico , Modelos Animais de Doenças , Feminino , Masculino , Camundongos
17.
Drug Metab Dispos ; 50(7): 923-930, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35489779

RESUMO

(S)-Efavirenz (EFV) is a reverse transcriptase inhibitor and an antiviral drug. In addition, (S)-EFV can interact off target with CYP46A1, the major cholesterol hydroxylating enzyme in the mammalian brain, and allosterically activate CYP46A1 at a small dose in mice and humans. Studies with purified CYP46A1 identified two allosteric sites on the enzyme surface, one for (S)-EFV and the second site for L-glutamate (Glu), a neurotransmitter that also activates CYP46A1 either alone or in the presence of (S)-EFV. Previously, we found that racemic (rac)-7-hydroxyefavirenz, (rac)-8-hydroxyefavirenz, (S)-8-hydroxyefavirenz, and (rac)-8,14-dihydroxyefavirenz, compounds with the hydroxylation positions corresponding to the metabolism of (S)-EFV in the liver, activated CYP46A1 in vitro. Yet, these compounds differed from (S)-EFV in how they allosterically interacted with CYP46A1. Herein, we further characterized (rac)-7-hydroxyefavirenz, (rac)-8-hydroxyefavirenz, (S)-8-hydroxyefavirenz, and (rac)-8,14-dihydroxyefavirenz, and, in addition, (R)-EFV, (S)-7-hydroxyefavirenz, (rac)-7,8-dihydroxyefavirenz, (S)-7,8-dihydroxyefavirenz, and (S)-8,14-dihydroxyefavirenz for activation and binding to CYP46A1 in vitro. We found that the spatial configuration of all tested compounds neither affected the CYP46A1 activation nor the sites of binding to CYP46A1. Yet, the hydroxylation position determined whether the hydroxylated metabolite interacted with the allosteric site for (S)-EFV [(R)-EFV, (rac)-7,8-dihydroxyefavirenz, and (S)-7,8-dihydroxyefavirenz], L-Glu [(rac)- and (S)-8,14-dihydroxyefavirenz], or both [(rac)-7-hydroxyefavirenz, (S)-7-hydroxyefavirenz, (rac)-8-hydroxyefavirenz, and (S)-8-hydroxyefavirenz]. This difference in binding to the allosteric sites determined, in turn, how CYP46A1 activity was changed in the coincubations with (S)-EFV and either its metabolite or L-Glu. The results suggest EFV metabolites that could be more potent for CYP46A1 activation in vivo than (S)-EFV. SIGNIFICANCE STATEMENT: This study found that not only efavirenz but also all its hydroxylated metabolites allosterically activate CYP46A1 in vitro. The enzyme activation depended on the hydroxylation position but not the metabolite spatial configuration and involved either one or two allosteric sites-for efavirenz, L-glutamate, or both. The results suggest that the hydroxylated efavirenz metabolites may differ from efavirenz in how they interact with the CYP46A1 allosteric and active sites.


Assuntos
Benzoxazinas , Colesterol 24-Hidroxilase , Ácido Glutâmico , Alcinos , Animais , Benzoxazinas/química , Colesterol 24-Hidroxilase/química , Colesterol 24-Hidroxilase/metabolismo , Ciclopropanos , Ácido Glutâmico/metabolismo , Hidroxilação , Camundongos
18.
J Steroid Biochem Mol Biol ; 221: 106103, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35367370

RESUMO

Obesity has been known to increase the risks of breast cancer (BC) development and also to be associated with adverse clinical outcome of the patients. Abnormalities of cholesterol metabolism are not only related to obesity but also to biological or clinical behavior of BC patients. However, which metabolites or pathways of cholesterol metabolism could represent the characteristics of BC patients have remained virtually unknown. Therefore, in this study, we attempted to perform bird's eye view or comprehensive analysis of in situ or intra-tumoral cholesterol metabolic pathways using the multimodal approaches in order to elucidate the possible significance of cholesterol metabolites and its metabolic enzymes including CYP27A1, CYP7A1, and CYP46A1. GC-MS study using BC specimens was first performed in 60 BCE patients to evaluate cholesterol metabolism from cholesterol through oxysterols in both BC and normal tissues. Results of those analyses above lead to evaluating immunoreactivity and mRNA expression of CYP27A1, CYP7A1 and CYP46A1 in 213 and 153 BCE cases, respectively. Results of comprehensive GC-MS analysis did reveal that three oxysterols, 27-HC, 7α-HC and 24-HC were all related to malignant phenotypes in BC. 27-HC abundance was significantly associated with higher tumor stage (P = 0.0475) of BC patients. Luminal B type BC patients harboring high CYP27A1, the enzyme responsible for production of 27-HC were significantly associated with worse disease-free survival than those with low CYP27A1 (P = 0.0463). 7α-HC tended to be more abundant in HER2 positive and TNBC subtypes and higher levels of 7α-HC were also significantly associated with higher Ki-67 labeling index (P = 0.0022) and histological grade (P = 0.0286). CYP7A1, the enzyme involved in production of 7α-HC, was significantly more abundant in TNBC than other subtypes (vs Luminal A; P = 0.0321, vs Luminal B; P = 0.0048, vs HER2; P = 0.0103). The levels of 24-HC in BC were lower than normal breast tissues regardless of its subtypes. CYP46A1, the enzyme involved in the production of 24-HC, was detected only in 33 (15.5%) out of 213 BCE cases examined in this study. Results of our bird's eye view analysis of in situ or intra-tumoral cholesterol metabolism in BC patients did firstly reveal BC subtype dependent involvement of its different pathways. Results also indicated the therapeutic possibility of subtype dependent modification of cholesterol metabolizing pathways in BC patients.


Assuntos
Neoplasias da Mama , Oxisteróis , Neoplasias de Mama Triplo Negativas , Neoplasias da Mama/metabolismo , Colesterol/metabolismo , Colesterol 24-Hidroxilase/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Humanos , Redes e Vias Metabólicas , Obesidade , Oxisteróis/metabolismo
19.
ACS Chem Neurosci ; 13(10): 1526-1533, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35438962

RESUMO

CYP46A1 is an important potential target for the treatment of Alzheimer's disease (AD), which is the most common neurodegenerative disease among older individuals. However, the binding mechanism between CYP46A1 and substrate cholesterol (CH) has not been clarified and will not be conducive to the research of relevant drug molecules. In this study, we integrated molecular docking, molecular dynamics (MD) simulations, and adaptive steered MD simulations to explore the recognition and binding mechanism of CYP46A1 with CH. Two key factors affecting the interaction between CH and CYP46A1 are determined: one is a hydrophobic cavity formed by seven hydrophobic residues (F80, Y109, L112, I222, W368, F371, and T475), which provides nonpolar interactions to stabilize CH, and the other is a hydrogen bond formed by H81 and CH, which ensures the binding direction of CH. In addition, the tunnel analysis results show that tunnel 2a is identified as the primary pathway of CH. The entry of CH induces tunnel 2e to close and tunnel w to open. Our results may provide effective clues for the design of drugs based on the substrate for AD and improve our understanding of the structure-function of CYP46A1.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Colesterol/metabolismo , Colesterol 24-Hidroxilase/química , Colesterol 24-Hidroxilase/metabolismo , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Reconhecimento Psicológico
20.
Epilepsia ; 63(6): 1580-1590, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35316533

RESUMO

OBJECTIVE: The formation of 24S-hydroxycholesterol is a brain-specific mechanism of cholesterol catabolism catalyzed by cholesterol 24-hydroxylase (CYP46A1, also known as CH24H). CH24H has been implicated in various biological mechanisms, whereas pharmacological lowering of 24S-hydroxycholesterol has not been fully studied. Soticlestat is a novel small-molecule inhibitor of CH24H. Its therapeutic potential was previously identified in a mouse model with an epileptic phenotype. In the present study, the anticonvulsive property of soticlestat was characterized in rodent models of epilepsy that have long been used to identify antiseizure medications. METHODS: The anticonvulsive property of soticlestat was investigated in maximal electroshock seizures (MES), pentylenetetrazol (PTZ) acute seizures, 6-Hz psychomotor seizures, audiogenic seizures, amygdala kindling, PTZ kindling, and corneal kindling models. Soticlestat was characterized in a PTZ kindling model under steady-state pharmacokinetics to relate its anticonvulsive effects to pharmacodynamics. RESULTS: Among models of acutely evoked seizures, whereas anticonvulsive effects of soticlestat were identified in Frings mice, a genetic model of audiogenic seizures, it was found ineffective in MES, acute PTZ seizures, and 6-Hz seizures. The protective effects of soticlestat against audiogenic seizures increased with repetitive dosing. Soticlestat was also tested in models of progressive seizure severity. Soticlestat treatment delayed kindling acquisition, whereas fully kindled animals were not protected. Importantly, soticlestat suppressed the progression of seizure severity in correlation with 24S-hydroxycholesterol lowering in the brain, suggesting that 24S-hydroxycholesterol can be aggressively reduced to produce more potent effects on seizure development in kindling acquisition. SIGNIFICANCE: The data collectively suggest that soticlestat can ameliorate seizure symptoms through a mechanism distinct from conventional antiseizure medications. With its novel mechanism of action, soticlestat could constitute a novel class of antiseizure medications for treatment of intractable epilepsy disorders such as developmental and epileptic encephalopathy.


Assuntos
Epilepsia , Excitação Neurológica , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Colesterol 24-Hidroxilase/metabolismo , Modelos Animais de Doenças , Epilepsia/tratamento farmacológico , Camundongos , Pentilenotetrazol/toxicidade , Piperidinas/farmacologia , Piridinas/farmacologia , Convulsões/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...